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Abstract
A recently formulated statistical mechanics method is used to study the phase
transition occurring in a generalization of the travelling salesman problem
(TSP) known as the centred TSP. The method shows that the problem has clear
signs of a crossover, but is only able to access (unscaled) finite temperatures
above the transition point. The solution of the problem using this method
displays a curious duality.

PACS numbers: 05.10.−a, 02.10.Ox, 05.70.Fh

1. Introduction

In a recent paper, Lipowski and Lipowska [1] considered a generalization of the geometric
travelling salesman problem (TSP) by adding a new term to the cost function:

H = (1 − α)HL + αHC, (1)

HL =
∑

i

VL(ri+1, ri ) =
∑

i

|ri+1 − ri |, (2)

HC =
∑

i

VC(ri+1, ri ) =
∑

i

|ri+1 + ri |. (3)

The familiar term HL of the traditional TSP is the total path length of a cyclic tour defined
by some permutation of the N city indices. The new term HC is a measure of the distance of
the tour from the centre of the geometry. Here we shall only consider the two-dimensional
problem in a square domain and shall take this centre, the origin of the city coordinates, ri ,
to be the centre of the square. The parameter α, 0 � α � 1, specifies the relative strength of
each term.

The authors of [1] gave example motivations for the centred model, but the fact that they
found a transition as α is varied and were able to identify it as a complexity transition provides
sufficient interest. Specifically, they used simulated annealing techniques to numerically study
zero-temperature optimum configurations for instances with cities placed randomly according
to a flat probability distribution. While these configurations appear similar to standard TSP
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tours for small α, the picture is rather different at large α. For α = 1, rather than connecting
near-neighbour cities (ri+1 ∼ ri ), the tour connects cities lying on points that are almost
inverted with respect to the origin (ri+1 ∼ −ri ). Sharp changes in quantities such as 〈HL〉
(where the average is over the random instances) as α is varied suggest a phase transition.
Moreover, this transition was identified as a complexity transition [2], since the simulated
annealing schedule required to reach optima in the (large α) C-phase is much less stringent
than that required in the (small α) L-phase, indicating a difference in characteristic difficulty
of the problem as the transition is crossed. Complexity transitions have recently been of
strong interest to computer scientists, combinatorial optimists and physicists, and although a
transition has already been identified [3] in other versions of the TSP, the geometric basis and
simplicity of this centred model are very appealing.

Many questions about the nature of the transition remain, and the aim of this paper is
to investigate the model using analytic techniques recently developed to study the statistical
mechanics of stochastic TSP-like models [4]. The stochastic TSP has cities randomly placed
according to some probability distribution, usually taken to be flat. These techniques allow a
full solution of the stochastic theory in the region of high city density and finite temperature.
In particular, expectation values for the path length 〈HL〉 and its fluctuations can be computed
and these provide evidence for a smoothed transition at finite temperature. The technique is not
able to access the optima at low temperature and we cannot use it to compute critical indices
for example. Nonetheless, our methods produce other insights such as a duality α ↔ (1 − α)

between thermodynamic quantities that may have a role beyond the region of applicability of
the technique.

2. Formalism

The analytic techniques we use to solve the model were derived in [4] using a functional
formalism and have since been placed on a firm basis via a discrete approach [5]. The
continuum equations for a system of unit area and a flat distribution of cities allow the free
energy to be written in terms of a quantity s(r) which is defined by an integral equation,

βF = −2N

∫
d2r log s(r) − N log N, (4)

s(r) =
∫

d2r
1

s(r′)
exp(−β[(1 − α)VL(r, r′) + αVC(r, r′)]). (5)

Observables can now be obtained by standard thermodynamic relations. For example, the
expectation values for the total length of the path and its fluctuations are given by

〈HL〉 = N

∫
d2r d2r ′ VL(r, r′)

s(r)s(r′)
exp(−β[(1 − α)VL(r, r′) + αVC(r, r′)]), (6)

〈(HL − 〈HL〉)2〉 = α

β

∂〈HL〉
∂α

− ∂〈HL〉
∂β

. (7)

These expressions are proportional to N in contrast to the expected dependence of the optimum
configurations. For example, the optimum path length for the standard (α = 0) TSP grows
as

√
N and for α > 0 has more complex N dependence reported in [1]. Along with the non-

extensive N log N entropy, this scaling makes it already clear that the region within which the
technique is valid is restricted. Similar formulae hold for expectations of HC, but in all cases
we find that the solution of the integral equation (5) obeys a duality relation

s1−α(r) = sα(r) = sα(−r). (8)
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Figure 1. The average link length (1/N)〈HL〉 for the centred TSP according to the formalism of
[4] shown for β = 2.0, 5.0, 10.0, 20.0 with increasingly sharp step. Points (omitted at β = 20.0)
are from Monte Carlo simulations with N = 1000 averaged over 100 random instances.

This duality is a consequence of the symmetry that inverts with respect to the centre, r → −r,
and interchanges HL ↔ HC. As a result, F(1 − α) = F(α), so expectations of HC are simply
related to those of HL, for example, 〈HC(α)〉 = 〈HL(1 − α)〉. One immediate result of the
duality is that if any transition occurs, it must be at αc = 1/2. We shall return to discuss
whether this duality holds outside the range of validity of equation (5).

It has not been possible to analytically solve the integral equation (5), but an iterative
procedure on a discretized version converges rapidly and is numerically stable. Monte Carlo
simulations with N = 1000 and measurements taken over a million Monte Carlo moves
following a similar number of moves to equilibrate independently confirm the results and are
shown in the figures. At the lowest temperatures, it becomes hard for the Monte Carlo to reach
equilibrium and we omit the β = 20.0 data. In figure 1, the expectation value of the length per
link is shown as a function of α, for a variety of temperatures. Evidently, this tends towards a
step function and is a smoothed out version of the zero-temperature result shown in [1].

Fluctuations in the path length also grow as N and figure 2 shows how (1/N)〈(HL−〈HL〉)2〉
changes with α. This quantity is numerically more delicate than the simple average, but
although it can be computed by solving linear equations for ∂s/∂β and ∂s/∂α, we have simply
evaluated the expression in (7) with discrete derivatives. The Monte Carlo also suffers from
large sample-to-sample fluctuations at low temperature. As the temperature is reduced, a peak
starts to appear at αc.

Other quantities such as correlations between angles between successive links have
also been computed within this formalism and agree with Monte Carlo simulations. The
computations are interesting in that they show how to generalize the methods of [4] to compute
correlations along the path; however, they do not throw any further light on this problem and
its transition.

3. Low-temperature limit

Although no general analytic solution of the integral equations has been found, the low-
temperature limit can be understood using a saddle point at large β. Because the formalism
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Figure 2. The average per link length fluctuations (1/N)〈(HL − 〈HL〉)2〉 for the centred TSP
according to the formalism of [4] shown for β = 2.0, 5.0, 10.0, 20.0 with increasingly pronounced
peak. Points (omitted at β = 20.0) are from Monte Carlo simulations with N = 1000 averaged
over 100 random instances.

does not scale temperature [6], this low-temperature limit does not correspond to the TSP
optimum.

Writing sα(r) = tα(r) e−βwα(r), the stationarity condition of the exponent at large β is

wα(r) = minr′[(1 − α)|r − r′| + α|r + r′| − wα(r′)]. (9)

A solution exists with wα(r) linear in r, matching the tendency of the iterative numerical
solutions at low temperature. The prefactor tα(r) can also be determined based on linear
rather than the usual quadratic fluctuations [4]. The resulting solution obeys duality:

sα(r) =




√
2π

β(1 − α)
exp(−βαr), 0 < α � 1/2,

√
2π

βα
exp(−β(1 − α)r), 1/2 < α � 1.

(10)

The resulting expectation values have sharp changes at the transition point. For example,

1

N
〈HL〉 =




2

β(1 − α)
exp(−βαr), 0 < α � 1/2,

2
∫

d2r|r| = (
√

2 + log(1 +
√

2))/3, 1/2 < α � 1.

(11)

The length fluctuations develop a delta function singularity at αc, with leading coefficient
proportional to 1/β,

1

N
〈(HL − 〈HL〉)2〉 = 1

β

(
(
√

2 + log(1 +
√

2))

6
− 2

β

)
δ(α − αc) +

2

β2(1 − α)2
θ(αc − α).

(12)

The height of the fluctuation peak as determined by the iterative solution of the integral
equation at fixed αc appears first to grow as β as the temperature is reduced, but eventually
this 1/β behaviour is observed.



Letter to the Editor L637

4. Conclusions

The method of [4] for studying the statistical mechanics of TSP-like problems has been applied
to the centred TSP. Both numerical solutions of the equations at finite temperature and the
limiting behaviour at large β provide evidence supporting the transition observed though
numerical study of optimum configurations in [1]. The method is not able to reach the region
where optimal configurations dominate and the character of the evidence is a smoothed signal
of the transition indicating that the transition point lies at a temperature below that accessible
by this technique.

A noteworthy feature of the solutions is a duality, F(1 −α) = F(α), relating observables
on either side of the transition. This duality can be understood in terms of the density of
states: the number of cyclic tours with HL between E and E + dE is the same as the number
of tours with HC between E and E + dE, where in this regime of high city density and
high temperature, E should not be too small. This kind of relationship also exists between
a particular pair of one-dimensional Hamiltonians [7] in which the configurations are also
specified by permutations of N indices. However, in that case, even at finite N, a map between
a configuration with a certain value of one Hamiltonian and another configuration with the
same value for the other Hamiltonian was demonstrated. A brief consideration of particular
instances of the N = 4 case shows that a precise relationship of this kind cannot hold for the
centred two-dimensional TSP, so the duality must only be valid in the large-N limit. Within
the large-N limit, even if the duality holds for optima and near optima outside the regime of
high temperature, the lack of a definite map prevents one from using the α = 1 model on the
easy side of the transition to solve the hard TSP at α = 0.
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